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ABSTRACT

Simple physical relations (namely, the Rossby ratio between vertical and horizontal scales in quasi-geostrophic
flow and the dispersion relation for internal gravity waves) are used to estimate the vertical resolution consistent
with a given horizontal resolution. Using these relations we find that virtually all large scale models and observing
systems have inadequate vertical resolution. In models, the excess horizontal resolution can lead to increased
model “noise” rather than improved accuracy. In observing systems, the finer horizontal scales can be severely

misrepresented.

1. Introduction

We have long known that a given spatial resolution
demands a minimum time resolution in order to avoid
numerical instability (Courant et al. 1928). The
mechanistic basis for this instability is reviewed in ap-
pendix A. Briefly, the instability arises when the spatial
resolution defines modes whose time scale is too short
to be resolved with the existing time steps.! It should
be emphasized that the striking implication of the CFL
condition is that it calls for a time step that is usually
much smaller than the time scale associated with the
dominant spatial scale of the phenomena being de-
scribed. The point is that as long as we resolve the
smaller scales for which the CFL condition may be
violated, these scales will eventually be excited by non-
linearity or even roundoff error.

More recently, it has been noticed that a similar
consistency requirement exists between vertical and
horizontal resolution. It was noted by Hong and Lind-
zen (1976) that excessive horizontal resolution could
resolve modes whose vertical wavelength might be too
small to be resolved with the existing vertical resolution,
and that this situation could lead to spatial instability
(Lindzen 1970). When the radiation condition is used,
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! To be sure, one can avoid explicit numerical instability by using
semi-implicit time differencing; however, failure to satisfy the CFL
condition is inevitably accompanied by gross inaccuracy even in the
absence of numerical instability.
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this can actually lead to spurious amplitude growth
with height; when there is a lid, the manifestation is
more complicated. When there are so few levels that
spurious growth can’t manifest itself, one simply ob-
tains incorrect solutions (Lindzen et al. 1968). Here
too, the vertical resolution may be adequate for the hor-
izontal scales one is physically concerned with. Smaller
scales, however, are inevitably generated in the course
of integration. Despite this awareness, little evidence
in the literature shows that any serious attempt is being
made to achieve any consistency between horizontal
and vertical resolution in general circulation models,
in models for numerical weather prediction, or even
in so-called mechanistic models (for stationary waves,
sudden warmings, etc.). This is despite the fact that
the problem was early recognized by Charney (1949).

The purpose of the present note is to develop criteria
for such consistency and to examine current models
in the light of these criteria. The criteria developed also
apply to the resolution of observing systems, and we
shall examine this as well.

2. Consistency relation

In general, the atmosphere supports a variety of
physical wave mechanisms, and it is difficult, therefore,
to uniquely establish a consistent relation between
horizontal and vertical resolution. We shall separately
consider the quasi-geostrophic regime and the scaling
appropriate to gravity waves. -

a. Quasi-geostrophic flows

If one restricts oneself to waves which are quasi-geo-
strophic, then a relation between horizontal and vertical
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scales based on considerations of the Rossby radius of
deformation exists. The basic equation for quasi-geo-
strophic flow is the geostrophic conservation of pseu-
dopotential vorticity on horizontal surfaces (Charney
1973). The pseudopotential vorticity, ¢, on a beta-
plane is given by

a% 3*®
q= A ( ) Jot+ By
z* f —z* aq)
+ et /HO)a*[NO (- /H)aZ* (1)
where

® geopotential height

H, characteristic scale height

fo  characteristic Coriolis parameter
B  characteristic value of dfdy

z* = HoIn(ps/p)

p  pressure, and

ps surface pressure.

The inversion of (1) yields the velocity and temperature
fields. Within (1), horizontal scales, AL, and vertical
scales, Az, are related by the famous expression

AL = ]—V Az.
Jo

Commonly, we take Az = Hy, and refer to AL as
the Rossby radius. All vertical scales may appear, how-
ever, and each scale is associated with its own radius.
Similarly, each horizontal scale is associated with its
own “Rossby depth.” This symmetry is different from
the situation in hyperbolic systems where one cannot
have “too much” time resolution. For quasi-geo-
strophic systems one needs a balance between hori-
"~ zontal and vertical resolution (see appendix A). In
practice, however, most existing numerical models and
observing systems have inadequate vertical resolution
compared to horizontal resolution; we will, therefore,
emphasize the need for vertical resolution.

Now f = 29 sin¢g, where Q is the earth’s rotation
rate, and ¢ is the latitude. Thus at the poles, ' = 2Q,
but Eq. (2) is singular at the equator. On the basis of
equatorial 8—plane results, Matsuno (1966 ) and Lind-
zen (1967) have shown that in the neighborhood of
the equator the counterpart of AL is the geometric
mean of the Rossby radius at the poles and the radius
of the earth, a; i.e.,

(2)

(AL)? = N Aza.
. 2Q
In general, Egs. (2) and (3) suggest that for a given
AL (which we will identify with a horizontal grid in-
terval ) there will be different values for Az in the tropics
and at higher latitudes. Equivalently, if we fix Az, then
there will be different values of AL in the tropics and
at higher latitudes. If one uses a grid point model in

(3)
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TABLE 1. Vertical resolutions corresponding to various choices

of Ap and AL.

Az (km) Az (km) Az (km) Az (km)

A Az (km) Local Local Local Stat. wv.

(deg) Eqtrl 60° 45° 22.5° extratrop.
1 1.4 1072 0.34 - 0.39 0.28 0.78
2 5.6 1072 0.68 0.78 0.55 1.55
4 2.24 107! 1.35 1.55 1.10 3.10
8 0.896 2.7 3.10 2.19 6.20

spherical coordinates with uniform angular grid inter-
vals (i.e., A¢ = A\, where A is the longitude ), then for
a given A¢, the consistent Az will decrease as one ap-
proaches the equator (as already noted); it will also
decrease as one approaches the poles since a given A\
will be associated with smaller AL. This last problem
is avoided in spectral models by the use of triangular
truncations. In grid point models, the problem is dealt
with by using heavy spatial filtering poleward of 60°
latitude—apparently regardless of model resolution.
Such filtering represents one approach toward elimi-
nating excess horizontal resolution. We will discuss this
further later in this paper.

Expressing horizontal resolution in terms of A¢, (3)
becomes '

2Qa

Az = -—-(AdJ)z (4)

while (2), locally evaluated, becomes

Qa sin2

Az = ——N—?— A (5)

where
AL = a cospAN = a cospAg.
Taking
27

86 400 s
a = 6 400 km,

3
300s’

Q=

and

Eq. (4) becomes?

Az =~ 1.4 X 1073 (A¢geg)?. (6)
Note that Az, in the tropics, depends on the square of
A¢. The dependence is more clearly revealed in Table
1. Table 1 also shows numerical values for Az at 22 5°,
45°, and 60° based on Eq. (5).

% In Eq. (3), the quantity, A¢ is in radians; the conversion factor,
/180, has been included in Eq. (6).
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The numbers in Table 1 are not meant to be precise,
but they are roughly relevant, and the A2¢ dependence
in Eq. (6) implies that only models with relatively
coarse horizontal resolution are likely to have adequate
vertical resolution in the tropics. The situation is better
in midlatitudes. As we will see in section 3, local vertical
resolution requirements in midlatitudes are sometimes
marginally met in actual models, although the situation
may, in fact, be deceptive. Even when waves at 45°
are locally adequately resolved in the vertical, in fact
that they are inadequately resolved in the tropics
should, within a few days, influence results at 45°.

Finally, the present considerations are not restricted
to fully nonlinear global models. They are aiso relevant
to linear models for stationary waves, limited area
models, mesoscale models, etc. For these cases, how-
ever, special consideration must again be given to the
choice of AL. For example, linear (and other) station-
ary wave models typically restrict themselves to zonal
wavenumbers 1-3 (Jacgmin and Lindzen 1985). The
value of AL is thus primarily determined by meridional
resolution. In this case we would have

AL = aA¢,_

since A is no longer germane. The relation for Az will
still be different in the tropics and at higher latitudes.
Equation (4) remains appropriate in the tropics, but
at the poles we now have”

2Qa ( «
- _N—(T%)A""

Evaluating Eq. (7), we obtain the following relation
between Az (in kilometers) and A¢ (in degrees):

Az ~ 0.776A¢. (8)

These results are also illustrated in Table 1; evidently,
stationary wave models with adequate resolution in
the extratropics will still be problematic in the neigh-
borhood of the equator.

For limited area models, our local results for mid-
latitudes, as given by Eq. (5), are appropriate. Clearly,
vertical resolution requirements for such models in-
crease as ¢ decreases.

Az (7)

b. Gravity waves

Although most models focus on the synoptic and
planetary scales, the fact is that these models generally
use the primitive equations and, therefore, also contain
internal gravity waves. The approximate relation be-
tween vertical and horizontal scales for such waves is
derived from the dispersion relation (see Lindzen 1981)
which yields

3 Clearly the condition for Az will become more restrictive as one
moves equatorward.
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c—U
N

Az =~

(%)

where ¢ is the phase speed of wave, and U is the speed
of the basic flow. Superficially, Eq. (9) suggests that
Az is independent of AL. On the other hand, U varies
throughout the atmosphere, and, for most internal
gravity waves there will be critical surfaces where U
— ¢ = 0. Equation (9) would appear to call for unlim-
ited vertical resolution near such surfaces. In practice,
the situation is more complicated. To be sure, the ex-
plicit resolution of behavior near a critical surface is
the most demanding problem from the point of view
of resolution, and the easiest to develop an explicit
criterion for. When damping is present, ¢ has an imag-
inary part, ¢;, and the quantity ¢ — U will not have a
smaller magnitude than c¢;. Thus Eq. (9) can be re-
placed by

Ci

AzZpi = N (10)
Usually damping is represented by a damping rate, o;,
corresponding to a damping time, 7 = (o;)”". The
damping rate is related to ¢; by the relation

c,.=i’];"= o, AL

where k is the horizontal wavenumbef. We may use
the above relation to rewrite Eq. (10) as

Az ~ % AL.

(11)

Let us take
AL = aA¢

which is appropriate at the equator, and ignore the
effects of converging meridians. If we rather arbitrarily
set ; = 1/10 days, express A¢ in degrees, and express
Aznin in kilometers, we get the following expression
for AzZpin:

AZpmin =~ 0.619 1072A¢. (12)

Even without tabulation, it is evident that the vertical
resolution requirements for gravity waves near critical
surfaces (and almost all meteorologically important
gravity waves are likely to have critical surfaces) are
beyond the expectations of any model for either the
general circulation or for weather forecasting. This
would still be true even if we took ¢; = 1/1 day.-

In this connection, it is worth examining the relation
between vertical eddy viscosity and o;. Crudely speak-
ing, we have
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Taking v = 10°cm? s~ and Az = 1 km = 10° cm, we
get o; = 10 s~ =~ (3 h)~". For this choice of v, Az
= 1 km is compatible with A¢ ~ 2° at the equator;
however, at the poles the situation would be even worse.
That said, it must be noted that such a choice for »
would be regarded as excessively large except within
the boundary layer.

The above vertical resolution requirement applies
to the neighborhood of critical surfaces. Away from
such surfaces, the vertical resolution requirements are
likely to be far less demanding. The trouble is that we
do not, in general, know what ¢ a priori. Also, it is
possible for errors at critical surfaces to propagate
throughout the domain. This is especially true when
the waves originate from instabilities at critical surfaces,
but modest damping may so attenuate a gravity wave
propagating toward a critical surface, that errors at the

critical surface won’t matter. This depends on the-

damping and the time it takes the wave to travel across
some relevant domain at its group velocity—which in
turn depends on horizontal scale. This situation is very
case-dependent and doesn’t readily lend itself to a gen-
eral estimate.

¢. General remarks: observing systems

The above criteria for consistent vertical resolution
may seem unreasonably demanding. Observed systems
are commonly large in scale with relatively slow vertical
variation. Such systems, however, require only coarse
horizontal resolution, which in turn is consistent with
coarse vertical resolution. When models have finer
horizontal resolution, motions at the finer scales will
inevitably develop and if these motions are not ade-
guately resolved in the vertical then these scales will
contribute only to the “noise” field and degrade the
overall accuracy of the solution. The criteria for con-
sistent resolution for both quasi-geostrophic systems
and for internal gravity waves are based on well-estab-
lished physical relations which are clearly manifested
in analytic solutions for baroclinic instabilities (Lind-
zen et al. 1980), internal Rossby waves (Charney and
Drazin 1961), and internal gravity waves.

This being the case, the conditions for consistent
resolution must also apply to observing systems.
Clearly, if observing systems with fine scale horizontal
resolution are not accompanied by sufficient vertical
resolution then phenomena with fine horizontal scales
will be incorrectly observed, and the observations will
provide incorrect initial conditions for models.* In the
following section, we will examine how existing models
and observing systems fare according to the above cri-
teria.

“ It should also be noted, in passing, that these physical arguments
always refer to Az. This suggests that levels separated by uniform
Ap’s will tend to be problematic since the Az’s corresponding to the
upper levels will inevitably be large. )
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3. Relation to existing models and observing systems

The earliest numerical baroclinic models using
quasi-geostrophic or other filtered equations (Kibel
1957; Thompson 1961) had rather coarse horizontal
resolution (AL ~ 300-500 km) and only 2-3 levels
in the vertical. These characteristics were related to the
limited computational resources then available, but it
was commonly believed that for the forecasting of syn-
optic scale processes with filtered models such resolu-
tion would be adequate. The local results for 45° in
Table 1 suggest that this conclusion was not too far off
concerning consistency between vertical and horizontal
resolution—though these models certainly had other
major shortcomings. Other early arguments suggested
that horizontal resolution should be at least of the order
of the mean distance between observating stations,
which for Europe and the United States approximately
200-300 km. The fact that synoptic systems had finer
scales than the interstation separation suggested that
even filtered models would need still finer horizontal
resolution for numerical accuracy.

The first primitive equation (PE) models (Shuman
1962; Shuman and Hovermale 1968; Mintz 1965; Ar-
akawa 1970; Smagorinsky 1963) still had rather poor
spatial resolution (AL ~ 300-400 km with 2-6 levels),
although the need for a substantial increase in reso-
lution was generally appreciated. The improvement of
PE NWP and GC models in recent decades has been
tightly connected with increasing numerical resolution
(along with better parameterization of physical pro-
cesses and improved initial data analyses). That said,
however, it must also be recognized that the emphasis
has been on increasing horizontal resolution. In an in-
fluential paper, Robert (1974 ) advocated a modest in-
crease in vertical resolution (8-10 levels—not evenly
spaced in pressure ), but placed considerably more stress
on the need for 150 km horizontal resolution in forecast
models. Such emphasis was defensible up to a point.
Since then, however model horizontal resolution has
been increasing substantially; values of AL from 50-
100 km are not unheard of in large scale models, while
values of AL from 30-60 km are commonly found in
operational mesoscale and hurricane models. At the
same time, many models added additional levels,
though these levels were frequently used to improve
coverage of the stratosphere and the planetary bound-
ary layer (PBL) rather than to increase vertical reso-
lution. Indeed, average vertical resolution has been in-
creasing relatively slowly even during the post-FGGE
period. The estimates in section 2 suggest that it may
be time for renewed emphasis on vertical resolution.

We show in Fig. 1 the vertical and horizontal reso-
lutions used in actual NWP and GC models during
the pre-FGGE period. For purposes of comparison we
also reproduce the consistent resolutions displayed in
Table 1. Figure 2 shows the same information for the
post-FGGE period. Figure 1 includes filtered as well
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FG. 1. Vertical resolution (in km) and horizontal resolution (in

deg) used in numerical weather prediction and general circulation
models of the pre-FGGE period. Points are taken from Dods (1970,

1974). Numbered points refer to models listed in appendix B. Curve .

a corresponds to the minimum vertical resolution needed in the
neighborhood of the equator. Curve b corresponds to the minimum
local resolution at 45°. Curve ¢ corresponds to the minimum local
resolution at 22.5°.

as PE models. Typical resolutions in the early 1970s
were AL ~ 300-400 km and Az ~ 2.5 km. By the
middle and late 1970s there were slight improvements
to AL ~ 200-400 km and Az ~ 1.5-2 km. It should
be noted that the average Az’s recorded in Figs. 1 and
2 are generally for the troposphere below 10-12 km.
Vertical resolution is usually poorer in the stratosphere.
The main point made in Fig. | is that almost all points
are above all our relevant consistency curves. Only
some experimental models with relatively poor hori-
zontal resolution (AL ~ 500 km) and with relatively
fine vertical resolution (Az ~ 1.25 km) have roughly
consistent resolution away from the equator. The
GFDL model has locally consistent resolution at 45°.
None has consistent quasi-geostrophic resolution near
the equator, and none comes close to consistent res-
olution for internal gravity waves with critical surfaces.
Turning to Fig. 2, we see a continuing tendency to
increase horizontal resolution relative to vertical res-
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olution. Almost all post-FGGE results lie above any
of the theoretical consistency curves, although a few
models are locally consistent at 45°. According to our
estimates (see Table 1), the ratio r = Az/A%@ should
be O(0.015) near the equator. For the models in Fig.
2, r =~ 0.5~1.0. Recent reports (WMO 1987) have
demonstrated improved large scale model performance
with increased vertical resolution. This is especially true
for the SKYHI model at the Geophysical Fluid Dy-
namics Laboratory at Princeton (Mahiman and Um-
scheid 1987) with Az = 1 km. These authors, in fact,
claim to resolve internal gravity waves, which is entirely
possible away from critical surfaces. Unfortunately, as
noted in section 2, inadequate resolution at critical
surfaces acts in many cases to produce incorrect results
at all levels.

Insufficient vertical resolution is particularly evident
in operational mesoscale and hurricane models where
AL ~ 30-60 km, and Az ~ 0.75-1.25 km. It is inter-
esting in this regard to note that the Limited-area Fine
Mesh (LFM) 6-level model of the National Meteoro-
logical Center (NMC) seems to show no forecasting
advantage over NMC’s large scale spectral 18-level
model.

Finally, we note that the high-resolution linear sta-
tionary wave model of Jacqmin and Lindzen (1985)
(A¢ = 1.5°, and Az = 1 km) has consistent resolution
outside the tropics according to Table 1, but has in-
adequate vertical resolution near the equator. Consis-
tent with this, their solutions were ill behaved near the
equator until heavy damping was used in this region.
Similar results have been reported for other stationary
wave models (Nigam et al. 1986).

Turning to observing systems, it must be immedi-
ately recognized that there are far more systems than

3.0 <
25 .
2.0 - < <b
E : //
N 16 - s - > C
> Te | 9
i :/ .
1.0 2ty P Y
2 $oere L 1
o |
05 va —a
00 1
0 1 2 3 4 5 6
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FIG. 2. The same as Fig. 1 but for post-FGGE models described in
WMO (1987). Numbered points refer to models listed in appendix C.
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we can reasonably discuss. We will therefore restrict
ourselves to the main observing systems for large scale
weather prediction and climate analysis: namely, the
conventional rawindsonde and satellite systems. Ra-
windsondes provide data primarily at mandatory levels
for which the characteristic vertical resolution is ap-
proximately 1.5 km. Additional data from other sig-
nificant levels is provided and sometimes used. More
commonly, not even all the mandatory levels are used.
For purposes of this paper, however, we will take Az
= 1.5 km for rawindsonde data. The conventional ra-
windsonde network is notoriously unevenly distributed
over the globe. Characteristic horizontal resolution over
the United States, Europe, and South and Eastern Asia
is typically AL = 2°-3°. Over less densely covered
areas like Africa, South America, Siberia and Northern
Canada, AL ~ 5°-7°, and over most of the globe, AL
> 7°, The horizontal resolution associated with satellite
radiance data is, in general, much better. For current
systems, AL =~ 1° (Susskind et al. 1984; Reuter et al.
1988), although this data strongly depends on cloud
coverage, and is generally less accurate than rawind-
sonde data. In the future, we may anticipate even higher
horizontal resolution from such systems. The proposed
Earth Observing System anticipates AL ~ 0.5°-0.8°
(NASA 1984). The vertical resolution associated with
satellite radiance data is not altogether clear. Straight-
forward inversion techniques yield significantly worse
vertical resolution than is obtained with rawindsondes;
however, it is argued that some retrieval techniques do
provide useful data at the conventional mandatory
levels. Somewhat optimistically, we will accept Az
=~ 1.5 km for satellite data. The horizontal and vertical
resolution provided by rawindsonde and satellite sys-
tems is summarized in Fig. 3, where we again include
the curves for consistent resolution from Table 1. As
can be seen, the vertical resolution associated with
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mandatory levels is consistent with a horizontal reso-

lution of 4° near 45°, and of 9° near the equator. Over

much of the globe vertical resolution is consistent ( for

quasi-geostrophic components of the circulation ) with

the horizontal density of rawindsonde data. Unfortu-

nately, it is also clear that this horizontal resolution is
frequently inadequate to even identify important me-
teorological systems. Over the data-dense regions, even
rawindsonde data requires more vertical resolution.

Even with generous estimates for vertical resolition,
it is evident that much of the horizontal resolution
provided by satellite radiance data is not likely to be
quantitatively useful. It only leads to the horizontal
resolution of systems for which the data provide in-
correct vertical structures (i.e., real vertical structures
are aliased to the resolved vertical scales); this, in turn,
can lead to meaningless diagnoses for these scales since
eddy heat fluxes and other diagnostics depend critically
on the detailed phase structure of waves. It should be
emphasized that although the larger horizontal scales
may be associated with slow vertical variation, the same
is not, in general, true for the finer scaled features. Nei-
ther major observing system appears capable of gen-
erally resolving internal gravity waves. It is also unclear
whether the possibility that some internal gravity wave
may be adequately resolved is useful in practice.

4. Conclusions

In this paper we have developed simple physical cri-
teria for the vertical resolution consistent with hori-
zontal resolution in both models and observation sys-
tems. The criteria are based directly on well-established
notions of Rossby radius and gravity wave dispersion.
We then proceed to examine existing numerical models
for forecasting, general circulation, mesoscale circu-
lation and stationary waves in the light of our criteria.

1.5 s =

AZ km

05 7

0.0

AS, degrees

F1G.3. Typical horizontal and vertical resolution for rawindsonde (R), and satellite radiance (§) observing systems.
The solid line, 1, corresponds to R for the United States, Europe, and Southern and Eastern Asia; the dotted line, 2,
to R for Africa, South America, Siberia, and Northern Canada; the dashed line, 3, to R for oceanic regions (this line
should really continue well beyond the edge of the figure); the dot-dashed line, 4, to .S for current and projected
systems. The curves for theoretically consistent resolution are identical to those in Fig. 1.
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In almost all cases model vertical resolution is smaller
than demanded by consistency. This is especially so
near the equator and for gravity waves. The same
shortcomings are found to exist in the major observing
systems (notably, the global network of rawindsondes
and satellite radiance observing systems).

In view of the above, one might plausibly ask why
existing models work. This question is not easy to an-
swer with any degree of certainty, but three possibilities
are readily identifiable.

1) As far as we can tell, all existing models suffer
from noisiness when started with real data and/or
without smoothing and substantial damping. In the
light of our criteria, it would appear that the initializa-
tion of data amounts to a smoothing operation which
serves to minimize the extent to which inconsistently
resolved scales are initially excited. Thus, the devel-
opment of these inconsistently resolved scales via non-
linearity, roundoff errors, etc., must take a finite
amount of time. Inconsistent resolution then joins a
number of other factors in limiting predictability.

2) Similarly, the use of smoothing and damping
(especially diffusive damping) within models serves to
decrease the actual horizontal resolution—presumably
to a degree consistent with the vertical resolution. This
is certainly the case with polar filtering. At best it would
appear that we are engaged in the wasteful activity of
introducing excessive horizontal resolution (relative to
vertical resolution) and then, in effect, throwing it
away.’ By “substantial damping” we mean damping
sufficient to cause the decay of a particular scale in a
time short compared to the time over which one is
predicting. It is interesting to note in this connection
that fourth order horizontal diffusion in the ECMWF
model provides substantial damping for scales less than
500 km (A. Simmons personal communication 1989).
Reference to Fig. 2 shows that this leads aimost exactly
to consistent resolution.

3) Itappears sometimes to be the case that nonlinear
processes actually smooth fields naturally in the neigh-
borhood of the equator so as to diminish vertical res-
olution requirements. Nigam et al. (1986) have ob-
served that GCM’s seem to require less vertical reso-
lution to depict stationary waves in the tropics than
do linear models. There is, thus far, no compelling ev-
idence that this is a general effect in all regions.

In view of our arguments, it would seem more rea-
sonable for future models to seek a better balance be-
tween vertical and horizontal resolution. In view of
our results for the neighborhood of the equator, it

5 It is conceivable that the extra resolution might facilitate the in-
troduction of initial data. This might account for the improved per-
formance sometimes noted when horizontal resolution is increased.
Recent findings, however, tend to show no substantial model im-
provement when horizontal resolution is increased beyond a few de-
grees without also increasing vertical resolution (WMO 1987).
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would also appear that this would require nonuniform
horizontal resolution with much poorer resolution near
the equator (at least for a fixed vertical resolution).
We should emphasize that higher horizontal resolution
is desirable; our only point is that just as higher hori-
zontal resolution must inevitably be accompanied by
higher time resolution, it must also be accompanied
by higher (and in many cases much higher) vertical
resolution. In this connection, the danger of models
whose vertical structure is described by levels separated
by approximately uniform Ap is evident, since at upper
levels these models will have large Az.

Similarly, in order to properly describe the atmo-
sphere (and provide suitable initial conditions for
models), data must also have a balance between ver-
tical and horizontal resolution along the lines illustrated
in Table 1. For radiosonde data, consideration should
be given to the explicit use of data from all possible
levels, and not just some of the mandatory levels. The
situation seems more difficult with satellite radiance
data. It may be well to recognize in this case that high
horizontal resolution may not, in practice, be mean-
ingful. New satellite techniques involving Doppler lidar
wind sensing (NASA 1984) seem potentially more
consistent in this regard.

Finally, it should be noted that neither models nor
global observing systems seem likely to properly resolve
internal gravity waves. To be sure, some gravity waves
may be locally well resolved; however, as already noted,
inadequate resolution at critical surfaces will com-
monly lead to errors everywhere, including regions
where gravity waves are adequately resolved locally. In
view of this, it is worth considering where the assumed
advantage of primitive equation models actually lies.
It is conceivable that balanced, filtered models may yet
offer some advantages.
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APPENDIX A
Interpretation of C-F-L Condition

At the heart of the C-F-L condition is the obvious
fact that one cannot march forward without adequate
resolution, and that the resolution needed in time is
determined by the spatial resolution. The literature
contains several approaches to this central result. All
begin with the canonical hyperbolic equation

p _ ,9p
ar? ax?’

The approach most common in the meteorological lit-
erature (see Thompson 1961 ) simply uses centered dif-

(Al)
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ferences in ¢ and x to approximate (Al) and shows
that the numerical solution will have exponential
growth in time if cAt/ Ax > 1. An alternative approach,
due to,Courant et al. (1928) notes that when cAt/Ax
> 1, the numerical domain of influence for a point (x,
t) is smaller.than the domain determined by the char-
acteristics of (A1), and hence the numerical solution
cannot converge to the actual solution as Ax — 0.

A third, more restrictive, approach is most illustra-
tive in the present case. Consider a situation where
p(0) = p(L)=0(i.e., vibrations of a string). Equation
(A1) can be solved by separation of variables:

p=3rh sin(m) . (A2)

. "L
Using finite differences in x is equivalent to truncating
(A2) at a finite N where

2L
N~——.

TAX (A3)
The equation for f (dropping the subscript, n) is

2
fut cz(%) f=0. (A4)
If one approximates (A4) with centered time differ-
ences, one again develops numerical instability for
those N’s where [using (A3)] cAt/Ax > 1. The im-
portant point here, however, is that one would also
obtain spuriously growing solutions if ¢ < 0, and the
system were elliptic. One might then associate ¢ with
a spatial dimension rather than time. The appropriate
condition would involve the absolute value of ¢. This
is the present situation, where Az, above, is identified
with vertical resolution, and Ax is identified with hor-
izontal resolution. The symmetry of bounded elliptic
systems would also demand that At not be too small

relative to A x—in contrast to hyperbolic systems where.

At/ Ax can be made arbitrarily small. In actual models
and observing systems it turns out that horizontal res-
olution determines the needed vertical resolution.

The nature of such numerical instabilities is most
clearly illustrated by the mathematically trivial situa-
tion where our horizontal resolution is sufficient to re-
solve a solution whose vertical behavior is expected to
be exponential decay with a characteristic scale which,
for convenience, is taken to be unity. In a simple sep-
arable problem, the vertical structure might be de-
scribed by an equation like the following:

af

- -f (A5)

with f(0) = 1. Equation (A5) has the solution
f=e>
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FiG. 4. Finite difference approximations to e—~.

Differencing Eq. (A5) in the most obvious way, we get

f;t+1A f;l —- j;1
z

with fp = 1. In Fig. 4 we show the analytic solution as
well as solutions to Eq. (A6) for various choices of Az.
For Az = .1, the solution to Eq. (A6) is a reasonable
approximation to the exact solution. For Az = 1, the
numerical solution is at best only schematically correct.
For Az = 2 we have a “2Az” oscillation rather than

(A6)

-exponential decay, while for Az >-2 (not shown in Fig.

4), we have an unstable oscillation. One simple point
which needs emphasis is that although the condition
for spatial instability is Az > 2, solutions with 2 > Az
> 1 are almost totally inaccurate. In this connection
it is interesting to note a recent result of Lorenz (1989)
wherein be discovered that for difference solutions sat-
isfying conditions for numerical stability, one obtained
chaotic behavior—not related to solutions of the un-
derlying continuous equations—unless still finer res-
olution was used. Finally, it should be noted that if
one has substantially inadequate resolution, then in-
creasing the resolution does not actually do much to
increase the accuracy of the numerical solution. So-
lution accuracy only begins to improve once one gets
close to adequate resolution, and then the improvement
is rapid. This is clearly seen in the calculations of Lind-
zen (1970).

APPENDIX B
Selected Pre-FGGE Models

The list of models comes from D66s (1970, 1974).

1. GFDL global 18-level model using modified Ku-
rihara grid, United States of America

2. GISS global 9-level model, United States of
America o
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3. NCAR global 12-level model, United States of
America

4. NMC global 8-level model, United States of
America

5. Global 5-level model, Union of the Soviet So-
cialist Republics

6. Global 5-level general circulation model, United
Kingdom

7. Global 3-level model, Japan

8. Global 5-level spectral model, Australia

9. Filtered 4-level model, Canada*

10. PE 6-level model, Federal Republic of Germany

11. PE 5-10 level model, France*

12. PE 5-level model, Sweden *

Note: The results for the models maked by an as-
terisk are taken from D66s (1970). The other results
are from Do6s (1974). The numbers correspond to
those shown in Fig. 1.

APPENDIX C
Selected Post-FGGE Maodels
The list of models comes from WMO (1987).

1. ECMWEF 19-level spectral model (with T203)

2. Spectral 9-level model, Australia

3. Spectral 15-level model, Canada

4. Fine-mesh limited area 9-level model, People’s
Republic of China

5. Spectral 15-level model, France

6. Fine-mesh 15-level model, France

7. Moist 9-level model, Federal Republic of Ger-
many

8. Spectral 16-level model, Japan

9. Very fine-mesh 16-level model, Japan

10. 8-level typhoon model, Japan

11. 20-level mesoscale model, Norway

12. Regional 9-level model, Sweden

13. Spectral 15-level model, Union of the Soviet

Socialist Republics

14, Hemispheric 10-level model, Union of the So-
viet Socialist Republics

15. Global 15-level model, United Kingdom

16. Regional fine-mesh 15-level model, United
Kingdom

17. NMC Spectral 18-level model, United States of
America

18. NMC Regional nested grid 16-level model,
United States of America

19. 10-level Movable fine-mesh hurricane model,
United States of America

Note: The numbers of the above items corresponds
to those shown in Fig. 2.
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