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ABSTRACT

The general problem of the vertical propagation of equatorial waves through mean fields with vertical
shear is solved analytically for all meridional wavenumbers using asymptotic multiple-scale methods. The
results are used to show that the mixed gravity-Rossby wave is not the only easterly wave capable of
penetrating the stratosphere, while the Kelvin wave is the only westerly wave capable of doing so. The
results are also used to evaluate the effects of mean wind on diurnal tides.

1. Introduction

In Part I (Lindzen, 1971) multiple-scale analysis was
used to obtain asymptotic expressions for the vertical
propagation of internal equatorial Kelvin waves and
mixed gravity-Rossby waves (referred to as VYanai
waves) in a fluid whose basic state included a vertical
shear. In the general context of equatorial wave theory
the Kelvin and Yanai waves correspond to meridional
wavenumbers #=—1 and #=0, respectively (Lindzen
and Matsuno, 1968; Holton and Lindzen, 1968). The
novelty of the analysis in Part I arose from the fact
that the basic equations were nonseparable in their
height and latitude dependence. As a result the Kelvin
and Yanal waves changed horizontal scale as they
propagated vertically, For wavenumbers #21, the
possibility arose of waves changing both horizontal
extent and form as they propagated vertically; this
significantly complicated the analysis, and as a result,
Part I did not include the analysis of waves for which
n2 1. The extension of the earlier analysis to #2> 1 will
be described. The results will be used to show that
easterly waves for which #n=1 (there are two corre-
sponding to internal gravity and Rossby waves) are
about as effective as Yanai waves in propagating
through the stratosphere. It will also be shown that the
Kelvin wave is, indeed, the most efficient westerly
wave. Finally, the wind dependence of the main
propagating diurnal tidal mode (Lindzen, 1967a) will
be evaluated.

2. Equations

As in Part I, the equations used are identical to those
in Lindzen (1970). For the reader’s convenience we shall
repeat them here. We will consider linearized waves in
a Boussinesq fluid on an equatorial 8 plane. Both

1 Present affiliation: Harvard University, Cambridge, Mass.

perturbations and the basic state are taken to be in
hydrostatic balance, The basic flow U is taken to be
purely zonal, dependent only on height, and in geo-
strophic balance, The basic state is characterized by a
constant stability § where

ad
S~ —-5(lnﬁ), 1)

where j is the basic density. The Richardson number of
the basic state is assumed to be large. The dependence
of the perturbations on time ¢ and west-east distance x
is taken to be of the form

ei(kz-i-ut)’ (2)

where w is the wave frequency, and % the zonal wave-
number. The resulting perturbation equations are
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« is an arbitrary damping coefficient; %, ¥, w, §p and 8p
are the perturbation zonal, southerly, and vertical
velocities, and pressure and density, respectively; ¥
and 5 the southerly and vertical distances; 8 is 2Q/a;
a and Q the earth’s radius and rotation rate; and over-
bars refer to the basic state. Taking the Richardson

number as
wess /()
i= —1,
§ dz

and dropping terms O(Ri™!) compared to 1, we can
derive from Egs. (3)-(7) a single equation for tI>

aUu 9%
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dz dz0y
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where
d=wt+kU—ix

We shall adopt the convention that w>0, in which case
westerly waves are associated with negative %, and
easterly waves with positive k.

Details may be found in Lindzen (1970). Other fields
are related to ® by the following equations:

BydU d 9
v=(8ty —&2)“1[%kﬁy¢—w<—————+ )] (1)
gS dz 0z 9y
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The Boussinesq approximation is by no means
necessary, though it helps simplify an already cumber-
some problem. Its main effect is to eliminate a factor

P~ that would otherwise appear in the solutions for #, »,
w, 6p/p and ®, The results are otherwise similar prov1ded
that S is identified with (1/7)[07/dz)+(g/c,)] in the
atmosphere.

Our boundary conditions on & will be ®—0 as
y*—>o0, We will assume that a wave is forced at z=0,
and only the upward travelling wave will be considered.
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3. Mathematical solution

Again, as in Part I, I wish to obtain asymptotic solu-
tions to (10) by means of the “two-variable” technique
(otherwise known as the multiple-scale technique)
described in Cole (1968). Once more it proves con-
venient to repeat portions of the analysis developed in
Part I. The technique requires that the characteristic
scale for the variation of U(z) must be much larger than
the characteristic vertical scale of the waves we are
solving for (i.e., the local vertical wavelength divided
by 2x). The next step is to replace z by “slow” and
“fast” height variables (U being taken to be a function
solely of the slow variable), where the slow variable is of
the form

r=e, <1, (15)

where e is chosen so that the = derivatives of U are of
order unity. Then

aUu  4dU
—=e—=el’, (16a)
dz dr
aUu drU
— ==, (16b)
dz? dr?
For our fast variable we choose
- [ o, (1)
0
where f may be expanded as
F=fo(r)+efa(r)+efa(r)+- - (18)

The order e term in (18) is omitted; its effects are
already included in the 7 dependence; and f(r) is
determined in the course of solution. In addition,
because (10) is nonseparable in its z and y dependence,
it proves convenient to replace y by a scaled variable

€=3’/l(7'), (19)
where
I=ly(r)+ea(r)+- - -, (20)

and where I(r) is also determined in the course of
solution. In terms of our new variables

®=3(3,¢,7), (21)
where & is also expanded in powers of e:
<I>=<I>0(§,E,?)+e®1(§,f,7')+ T (22)

The change of variables in (10) and the substitution of
expansions (18), (20) and (22) leads to a very lengthy
equation which is described in detail in Part I. The
resulting equation may be ordered according to powers



1454 JOURNAL OF THE

of e. To zeroth order one gets

02®,
(ﬁ2£2lo2__ "Z)fo2__._
922
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[4)

Eq. (23) involves = only parametrically, and its solu-
tions are simply those given in Lindzen (1967a),
Lindzen and Matsuno (1968) and Holton and Lindzen
(1968). There are a countably infinite set of these
solutions designated by n=—1,0,1,2,.... For each
of the solutions, the scaling factors fo and /y turn out
to be related simply as

gS
ﬁ2l04 =F =gh(n),
0

where %™, the equivalent depth of tidal theory (viz.
Chapman and Lindzen, 1970), is determined for each #.
This means that & and £ represent different scalings for
each n. Once &, is obtained, the remaining flelds to
zeroth order in € are given by [see Egs. (11)-(14)]

(24)
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0

1
Wo= -‘—-&‘)f‘po, (26)
gS
1 /1 9%,
U= '——<-‘ —+ idﬂ)o), (27)
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The solutions for n=—1 (Kelvin waves) and #=0
(Yanai waves) have been discussed in detail in Part 1.
T shall, here, restrict myself to #2> 1. The zeroth order
solutions for #> 1 are discussed in Lindzen (1967a) and
Lindzen and Matsuno (1968), and given by
$o® = Ao (r)[—2nq(r) Hnr(§)+ Hria(§) ]
Xexp(—£%/2) exp(ig), (29)
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—\/gh(ﬂ) —
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where H,(£) is the nth Hermite polynomial in £ Tn
addition to the solutions given by (20), there are also
solutions proportional to ¢ %; however, these solutions
represent downward propagating wave energy. The
minus sign in (30) corresponds to internal gravity wave-
type solutions; the plus sign corresponds to Rossby-type
waves. Vertically propagating solutions of the latter
type exist only when

29
—>1

6

(30a)

(viz. Lindzen and Matsuno, 1968). However, even
when (30a) is satisfied, Rossby waves are frequently
(especially for large %) associated with horizontal scales
larger than the pole-equator distance. This is, of course,
a fictitious result arising from the inadequacy of the
unbounded equatorial beta-plane to describe such
modes.

For n2 1, since ¢(r)5%0, our solutions are no longer
simply factorizable into functions of 7, z and § alone.
This factorizability is essential to the usual application
of “two-variable” techniques. Therefore, for 21 a
somewhat new approach is needed wherein ¢ is expanded
in powers of ¢, Le.,

g(r) =qo(r)+eq:(r)+- -,
k
B
- i
Qe
(6)

Using (32) it becomes convenient to rewrite (22) as

W =J W rW+B W)+, (34)

(32)
where

qo(7) = (33)

where
Y = — 2046 () gm(T) H nr(§)e 865,
‘Then, to first order in ¢, we have

fol? 2B 8 {

(35)
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where
B dfod®  fodlo 0%
N=2fo— o e 2 — ——, @37)
0%20r dr 0% lo dr 0R0¢&
gt T dp 1o s T )
I,=4 B 74 - . >
S S P o
11 0%®g aP,
I3=2gSp%*~ —Ba’ fo(B2E8e*+ T —
lo 982 02
gSk
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&
a2
Ji= foP—, (40)
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gS 3%
2= —gSkzlph (41)
lp* 0
8S Wk
J3=——28%2t——-gS—B(BH:*E* - %), (42)
le? a¢ &

Just as in Part I, we must use our available parameters,
Iy, q1 and 4y in order to (i) eliminate the singularities
on the right-hand side of (36), and (ii) suppress any
projection of the right-hand side of (36) on ®,. Because
of the more complex nature of ®,( here, however, the
task is more complicated than it was in Part I. The
results, however, are comparably simple.

To begin with, I substitute expressions (29) and (35)
for ®™ and ¥ into (38), (39), (41) and (42) to get

I+ T2)(B:3?— )+ I+ T 5

2
=idoBlequeise (1~ K (Y amt™) Hn 1(2)

m=0

F(E b @), (@)

where

k ko
K =—8l*=—gh, (44)
@ @

do=—2n{2M[2m(K*—~2K*+ 2n+1)
+(1—K)(~2K*+2K*+K-1)]
+@2n+1—-K)[~-22n—1)(1—K?)L
+Qr+1)(1—K)+(2n—1)(1-K%)QT},
ay=2n{4(1—-K>(2n+1—-K)M
—2L[(2n+1)(B~K)(1—KD)—2K(1—K?)]
+0[2(n+1)(1-K)*(1—-K?)
+(2n+1)E-KH(1—-K*)—2K(1—-K%) ]},

43)

(46)
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s =4n(1—K2)[ - M+2L—-Q], 7

bo=—{4n(1 ~ K22 M — (2n+1—K)[2(2n+3)(1—K)2L
+Q@n(1—-K)+(2n+3)(1—K))QJ}, (48)

bi={2L(1—K)*[2n+1)(3—~K*) —2KJ+Q[(1~K)*

X((2n+1)(3—KY)—2K)+2m(1—KH%]}, (49)
by=—2(1—K)(1—K)*{2L+0}, (50)
and

M =36/ ozlozg—l, (51)
go

L=gfv’h, (52)

Q=8 foud, (83)

Z1= —il1, (54)

fr=—iq. (55)

In arriving at the above, the formal dependence of the
coefficients on & (apart from the dependence on K,
which depends on both % and @) has been eliminated
by use of the dispersion relation which can be con-
veniently written

P(1—-K*)=2n+1-K, (56)
where
»
Q=— (57)
Blo
In terms of @ and K, ¢o has the simple form
14+K
qo= . (58)
1-K

" The right-hand side (r.h.s.) of (43) is a polynomial of

order #+5 consisting in (#+45)/2 terms (if » is odd)
or (r+6)/2 terms (if » is even).

I now impose the condition that the r.h.s. of (36) is
non-singular. This, in turn, requires that the r.h.s. of
(43) be proportional to (82,252—&%?, or, equivalently,
to (£—9%2 Once more, * may be eliminated by use
of (56). More explicitly, let us call the bracketed portion
of the r.h.s. of (43), £; then we want

= (=0 (A=K T pna(®)

—[BU—E) =@t 1=K S unHn(). (59)

Both £ and the r.h.s. of (59) are of the same order in £.
However, we have only (z+1)/2 u»'s to choose in order
to make the coefficients of (#+45)/2 terms equal.
Fortunately, we also have M and L (or equivalently ¢,
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and /) at our disposal, and the system is, therefore,
determinate; i.e., it is, in general, possible to suppress
the singular part of the Lh.s. of (36).

It is necessary for what follows to write down the
first few equations for the pn’s. We first require ex-

pressions for the Hermite polynomials

ni2ngn pl2n—?
Ha(8)= - g0, (60)
n!  (n—2)!
Thus,
L= b22n+1£n+5
[~ (4 1)n27 2042710y 4 27 1ag JE7+3
+0(E), (61)

and the r.h.s. of (43) is given by

r.has. of (43) =271 — K%y, &8

(n+1)!
n—1)!

42 (=Kt —1-K)

-—8(2n+1—K>(1—K2>]un+1}zn+3+0<s"+l>. (62)

Thus, the first two equations which {u} and L, M must
satisfy in order that singular forcing at O(e) be sup-
pressed are

bo=(1—K%)*ny1, (63)
and

—(n+1)nbet4b1+as
(n+1)!
(n—1)!

~ (=Kot |~ (1=

~8(2n+1—K>(1—K2>]un+1, (64)

or using Egs. (50), (49) and (47),
~2(1=K)*(2L+Q) =(1~K®pn41, (65)
and
{n(n+1)(1-K2)+2[(2n+1)(3—K?)—2K]
21+ K2} 201 —K)2(2L+ Q) ~4n(1 — K22 M
(m+1)!

= (1—K2)2un—1+|:—(1 —K“’)m

f8(2n+1—K)<1—K2>]un+l. (66)

Of course, to determine {u,} and L and M we need the
remaining equations as well. However, our first task is
to determine A in order to suppress any part of the
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r.h.s. of (36) which has finite projection of &, and which
would, therefore, lead to spurious secular growth with
respect to £ We may note in this regard that only
those terms in (59) proportional to H ,,1(£) and H n1(£)
will have projections of ®¢. The remaining terras will
have no projection due to the orthogonality properties
of Hermite polynomials. The projection of any function
on $o{" is given by

Proj. g on ‘1>o<">=f @o"‘)gdé// o™, (67)

where
f e BH () Hn(§)dE=0ma2"nV/T, (68)
and therefore
/ DM E =24 %2 /T {nge?+ (n+1)).  (69)
Following the procedure of Part I we find
1d4e dge 'y
Proj. of I1=2ifo{’—‘ F1— ;
Ay dr dr {nqo*+ (n4-1)}
11dfe 11dl
——————— } (70)
2 fodr 2hdr

which may be rewritten
d n41 ¥

Proj. of Il=2if02—{1n[Ao[(qoﬁ+—————)foio:| ” (71)
T n ‘

Eq. (71) differs from the corresponding expression in
Part I due to the presence of the factor [gi?+(1-+1) /5%
Similarly, the projection of J; is given by

nqogifo?
(ng+ (1)
g0 fo?
ey
To find the remaining projection we note that
(It T2) (B2 — 67+ (Lot T3)
(B2£%062 —6%)?
iA geiei—812
= pop
and the projection of P on ®, is given by

Proj. J1= -

(72)

P

QO{uWIHM-H'un—lHn—ﬁ' te }, (73)

. 190 {2(%+ 1)/1%1"‘{?0[»&1»--1}
Proj. P= .

: (74)
B 2{nge*+ (n+1)}
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Now, we shall use (65) and (66) to eliminate (2L+Q)
and obtain the following relation between M and pni1
and pp_1:

- 4nng =— 21’148 2f02l(12q 1

=Q’0ﬂn—1—’2(n+1>}‘n+1- (75)
Thus,
7 fo
Proj. P=igo————fﬂ———= —~Proj. J1.  (76)
{ngo*+(n+1)}

This leads us to an important generalization of the
finding in Part I that for »=—1,0 all contributions to
the rhs. of (36) except I, went to zero when the
singularity was suppressed: namely, for #21 the
projection of everything except Iy on ®‘ goes to zero
when the singularities are suppressed. This time, how-
ever, the remaining terms, themselves, do not neces-
sarily go to zero; they may force O(e) terms. Still we
can now determine Ao without explicitly solving for
{um}, L, M. We do this by requiring

Pl‘Oj. Il=0,

which implies

d n+1 3
ol 2]
dar n

or (7

const.

Ag=

(6]

It should be noted that our solution for 4, is inde-
pendent of those terms in (10) proportional to di/dz.

4, Review of zeroth-order solutions

In this section I list the results obtained for various
fields to zeroth order in e:

const.

(470

X{ —2nqoH n1(§)+ Hpi1(§) ye 8%,

‘I’o("):‘

(78)

where

y
=,

Iy
R / fo(lZ,
0

and fo, lo, go (as well as Vgh) have already been
specified.
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For most practical applications the O(e) corrections
are very small, with relative magnitudes O(Ri™%); in the
equatorial stratosphere Ri~0(100).
To zeroth order, our solutions for other fields are

1 9%,
Vo= (6%282 —& 2>—l(2kﬁlog‘l’o"—"l@l— -(;g), (79)

(]

1 /1 9%,
Uy~ —-——(—— -——‘l-i&i/o), (80)
BloE\lo 3%
&
wo==— fodo, (81)
gS
8o i
BASEY 82)
p 8
If we substitute (78) into (79) and (80) we get
k
21'&(1-{-—[’?102)
&
7)0(") = AoHn(f)e“Eme"ﬁ, (83)
62103
1 A
o =/—3_l_2’A°{2”QOH n1(OFHopa(8))e 8122, (84)
(]
where
const.
Ao= (84a)

(o )s]

My results for vertical fluxes of momentum and for
the wave action are similar to those obtained in Part I,
For the vertical flux of zonal momentum due to linear-
ized waves in a rotating fluid I again use the expression

Fm=ﬁ(W“W ’ (85)

where overbar refers to a time (or longitude) average,

5. Vertical fluxes

n=—
[2)
is the southerly displacement associated with the wave,

and f the local Coriolis parameter. On an equatorial
beta-plane

f=By=B¢/h.

As before, I find no useful theorems for the behavior
of F,; however, the behavior of (F,), where { ) refers
to the integral from y=—c to y=- 0, is analogous
to the behavior of £, in a plane rotating fluid. Since
we are dealing with a Boussinesq fluid we will consider
Fo=Fn,/p rather than F.. The following results are



1458 JOURNAL OF

readily obtained:

(uw)y=-—A4—2"nnl/ 77‘{ —qo*t+ } ) (86)
gS ﬁlo n
k
1——B1,?
— & &
(fnw) = A 02—-f02"'ﬂ7$ l\/—‘ﬂ—'
Blo ¢S
n+1
X { —gt qo} , @)
n
. const.?
(Fuy=~4 . 2 /T fon(3). (88)

It may also be shown that the integrated wave action

wd
(4)= Q= ~(F m>— (89)

The independence of (ﬁm) and (4) of z holds only when
fois real or equivalently in the absence of damping.?

There is some reason to suspect that the constancy
with height of {4) and {F,.) in the absence of damping
are fundamental properties of internal waves. If this is
the case one may conjecture that in a fluid where S
varied slowly with height, the constant in (78) and
subsequent equations should be replaced by a constant
times (gS)t. Similarly, in a fluid where p varied signiﬁ-
cantly with z (but on a scale comparable with our “slow”
variable) we would expect a factor 5% in (78) and (84a).
In the preceding flux relations we would then consider
(F ) rather than (F,.) and (wép) rather than (®). The
detailed investigation of the above conjecture still
remains to be done,

6. Introduction of damping

The results in Section S assumed a=0 in (3), (4) and
(6). If « is sufficiently small the main effect of damping
is to make fy complex leading to the exponential decay

of our fields as
exp(—- / godz),
0

where go=imag. part of fo. The possibility was discussed
in Part I that the damping might be entirely due to
infrared cooling, i.e., @70 in (6), but a=01n (3) and (4).
With @540 only in (6), the analysis proceeds identically
to the problem without damping, except that in

(90)

2 When f, is real, if two fields are given by A = aei{#+kz+ed and
B=peilethatattoa) (where @ab is @ phase difference between the
two fields), then 4B= = (@b/2) cospas. If, however, fo is complex
then 2=2r-+i% and AB= (ab/2)e %' COS¢ab The realness of fo
has been assumed for (88) and (89).
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evaluating the vertical structure f,? is replaced by
(ctFeato)
e
(w-l— kuo—ia)

(viz. Lindzen and McKenzie, 1967) in which case, for
small «, fo is replaced by

(91)

o
{5 ) o
and
1
8 zE w+ kuofo, %)

where fy is calculated for a fluid without damping. The
analysis leading to the above result is essentially given
by Lindzen and McKenzie (1967).

When damping is introduced, the various vertical
fluxes described in Section 5 decay with height as

exp(—Z / godz>.
0

The fact that damping proves important for internal
equatorial waves makes the choice of a comparably
important. In Part I, the question was asked whether
there existed a choice of @ (where equal frictional and
thermal damping was considered) which would produce
the best correspondence between calculations and
observations of the vertical variations in arnplitude of
the mixed gravity-Rossby (Yanai) mode (z=0). It was
concluded that a=1/17.5 days led to such correspon-
dence. However, the effects of damping depend critically
on the Doppler-shifted phase speed of the wave, and in
Part I where an approximate analytic representation
was used for the mean wind, significant inaccuracies
entered this quantity. For example the observed value
of @ at 25 km (viz. Maruyama, 1967) was —18.5 m sec™
while #= —14 m sec™! was used in Part I. Equivalently
fi—c=4.5 m sec™! was observed while #—c¢=7 m sec™!
was used in Part I. When the observed distribution
of @ is employed, the best correspondence between
theory and observation is obtained for a=1/42 days.
Forty-two days is considerably longer than current
estimates for the radiative relaxation time at 25 km.
However, as has been pointed out earlier in this section,
when we have damping due exclusively to Newtonian
cooling the effective damping is less for any given choice
of o than when we have both cooling and friction.
Seeking a best correspondence with only thermal
damping leads to a choice for a of 1/10 days which is
in the range of existing estimates for the Newtonian
cooling rate (Dickinson, 1968). As a final remark, I feel
it essential to point out that the sensitivity of the choice
of a to the distribution of %@—¢ coupled with observa-

(94)
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tional uncertainties in the latter, make the above
method of determining o grossly uncertain. While I will
use a=1/10 days in subsequent calculations, I do so
only because this value is consistent with independent
estimates,

7. Symmetric easterly waves: n=1

In Maruyama’s (1967) analysis of easterly internal
waves in the equatorial stratosphere, the discussion
emphasized the antisymmetric mixed Rossby-gravity
mode (n=0), However, such a mode is associated with
zero amplitude zonal wind and temperature oscillations
at the equator, and it is clear from Maruyama’s analysis
that oscillations in these fields did exist implying the
existence of symmetric waves of similar phase speed
and zonal wavenumber. Similarly, the existence of
oscillations in northerly velocity at the equator un-
ambiguously demonstrated the existence of anti-
symmetric waves.? Symmetric waves correspond to
n=1,3,.... The Kelvin wave (#=—1) exists only as
a westerly wave. Although no detailed observational
analysis of symmetric stratospheric easterly waves is
available, a detailed study of theoretical results for n=1
should be suggestive of what is going on. Such a study
will also provide a concrete example of the kind of
solutions obtained earlier in this paper.

I shall investigate the behavior of waves with n=1
whose phase speeds and zonal wavenumbers are the
same as those of the Yanal waves studied in Part I, i.e,,

w
¢=——=—23 m sec™?
(95)

£=0.63X10"% km™*

For @, I take the distribution U; in Fig. 1 which is taken
from Maruyama (1967). With the above choice of
parameters, there are two solutions corresponding to
Rossby and gravity waves [#ziz. Eq. (30)]. The details
of the solutions are given in Section 4. The solutions for
individual fields are multiplied by the damping factor
given by (90). In addition, each field has been multiplied
by a factor ¢2/%# (where I took H =6 km) corresponding
to the effect of a non-Boussinesq atmosphere. In order
for the reader to better understand the results T shall
write the solutions in the following form:

'V =u(z)U(,)

Xexp(— / ’ gdz)exp(i / ’ fdz> exp(z/2H), (96)

3 One cannot overestimate the importance of data from equa-
torial stations like Kapingamarangi (01°02’N) where symmetric
and antisymmetric waves can be clearly disentangled; this is no
longer possible at stations away from the equator where each
field includes contributions from both types of waves.
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Fic. 1. Vertical distributions of mean zonal wind over the
equator: U; is taken from Maruyama (1967) while U, is taken
from Kousky and Wallace (1971).

Iy

where
u(z) =;4~0, ©7)
Ble?
[viz. Eqgs. (84) and (84a)] and
U(z,9)={2goHo+Ha(£)}e ¥12, (98)
where g¢ 1s a function of 2z and
s%, 99)

where Ip is also a function of z [wiz. Egs. (31), (24) and
(30)]. Similar breakdowns for v, and &, are readily
made, wherein

20V =v(2)V(3,y) exp(— / ’ gdz)
Xexp(i / ’ fdz) exp(z/2H), (100)
309 = o6)20e5) exp( — [ i)

Xexp(i/z fdz) exp(z/2H). (101)

In Fig. 2, the height distributions of #(z) for both
gravity waves and Rossby waves are shown as are the
corresponding quantities for v/ and ¢V, namely
v(z) and ¢(z). In Fig. 3 the height variations of
exp(— /i gdz) and exp[(z—16)/127 exp(— fis* gd2")
are shown for both gravity and Rossby waves. In Fig, 4
the variation of go with height for both gravity and
Rossby waves is shown, and Figs. 5-8 show the func-
tions U(z,y) and ®(z,y) as functions of ¢ for different
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F16. 4. The vertical distribution of the shape
factor go for n=1 gravity and Rossby waves.

values of go [V(2,y) is independent of go; viz. Eq. (83)].

Of course £ is a scaled variable, and in Fig. 9 the height

variation of the scaling factor g is shown. The informa-
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tion in Figs. 2-9 is needed to determine the height
variation of any field’s amplitude at any latitude. As
an example I show in Fig. 10 the height distributions of
the amplitude of the zonal wind oscillation for both the
n=1 Rossby and gravity waves at the equatcr. Also
shown is the height distribution of the amplitude of the
southerly velocity oscillation at the equator for a Yanai
wave. All values have been normalized to 1 at 16 km.
I shall discuss these results in some detail in the next

T i T
U(a,,¢}

-2

-
o

Fic. 5. U(z,y) [viz. Eqs. (96) and (99)] as a function of scaled
northward distance ¢ for different values of gy obtained for an
n=1 Rossby wave.

1 1 I

L
Q { 2 3 4

¢

Fi6. 6. ®(z,5) [viz. Eq. (101)] as a function of scaled north-
ward distance £ for different values of gp obtained for an n=1
Rossby wave.

T T I

Ul4,,§)

Fic. 7. Same as Fig. 5, but for values of g,
obtained for an #=1 gravity wave.



NOVEMBER 1972

T T T ]
®({q,,¢)
0
_2 -
-4 1
1.2 §

,.
L
L
Pl aad
(] o

F1c. 8. Same as Fig. 6, but for values of go obtained
for an n=1 gravity wave.
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Frc. 10. Amplitude of zonal wind oscillation at the equator
for =1 Rossby (solid dashes) and gravity (short dashes) waves.
Also shown is the amplitude of the southerly velocity oscillation
at the equator for the #=0 Yanai wave (short-long dashes).

section. Not only is amplitude varying with height;
local vertical wavelength (2x/Realf,) is also varying
as is shown in Fig. 11. Finally, in Fig. 12 I show the
vertical distribution of (F,) (normalized to 1 at 16
km) for the #=1 waves and the Yanai wave.
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F1c. 11. Distributions with height of the local vertical wave-
length (27/fo) for n=1 Rossby and gravity waves and for the
n=0 Yanai wave.
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8. Discussion of symmetric easterly waves

Table 1 shows the amplitude of the observed zonal
wind oscillation at various heights over Kapinga-
marangi. For comparison I also show the southerly
wind amplitudes. The values are taken from Maruyama
(1967). The mean wind at the time the data were
taken corresponds to U, in Fig. 1. One may reasonably
ask how the symmetric modes described in Section 7
account for these admittedly uncertain observations.
Clearly, in the absence of more data, no unique answer
is possible. However, using Fig. 10, some conjectures
are possible:

1) The Rossby mode cannot account for the observed
values at 100 and 50 mb. If it did we would bave to
have much larger amplitudes at 25 mb (~25 m sec™?)
than anyone has observed.

2) The gravity mode might plausibly explain the
observed amplitudes at 100 and 25 mb since its ampli-
tude over the equator is almost constant with height
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F1c. 12. Distributions of the latitudinally integrated vertical
flux of zonal momentum (#) (normalized to its value at z=16
km) for #=1 Rossby and gravity waves and the #=0 Yanai wave.
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TasLE 1. Observed oscillatory wind amplitudes over Kapinga-
marangi (after Maruyama, 1967).

2

(nfb)

(km) (m sec™) (m sec™)

100 16.5 34414 3. +1
50 21 2,60.8 24409
25 25 2.6+1.2 2.5+1.2

from 16-23 km (However, its vertical wavelength, 1-2
km (viz. Fig. 11) is so short as to interfere with the
accurate measurement of this mode). Above 23 km the
amplitude decays rapidly, and it appears impossible for
the gravity mode to explain the observed amplitude
at 25 mb.

3) The observed amplitude at the equator might be
accounted for by the sum of a gravity mode with an
amplitude of about 2.2 m sec™ over the equator at
16 km and a Rossby mode with an amplitude of about
0.38 m sec™! over the equator at 16 km. For the Rossby
mode this implies relatively weak forcing near 30°
latitude (viz. Figs. 6 and 9). For the gravity mode one
is faced with the problem that an amplitude of 2.2
m sec”! at the equator implies an amplitude of about
6 m sec”* near 7° latitude (viz. Figs. 7 and 9). The latter
value is greater than Maruyama reports for Kusaie
(05°20'N); however, as mentioned earlier, away from
the equator there may be some cancellation by sym-
metric and antisymmetric modes. In favor of the im-
portance of the Rossby wave near 25 km is the fact
(viz. Fig. 11) that its wavelength at 25 km is the same
as that of the Yanai wave some kilometers lower.

Before ending this discussion of internal easterly
waves, I would like to emphasize that each of the modes
discussed is effective in carrying momentum into the
stratosphere. As we see in Fig. 12 the n=1 Rossby
wave penetrates further than the Yanai wave, and the
Yanai wave penetrates further than the n=1 gravity
wave. Nevertheless, all the modes are absorbed below
an almost critical level while even the gravity wave is
able to carry appreciable momentum up to almost
23 km. However, the momentum carried by the Rossby
and Yanai waves is deposited in rather thin regions
while the momentum carried by the gravity wave is
broadly deposited over the region 16-23 km. Finally,
although the momentum flux due to the Rossby wave
is distributed over a broad range of latitudes at the
100-mb level, by the time the Rossby wave reaches the
levels at which it is strongly attenuated, its extent is
largely confined to the tropics.

9. Westerly waves

In contrast to the situation for easterly waves, the
main observed equatorial westerly waves are symmetric,
and there is little evidence of a comparable antisym-
metric component (Kousky and Wallace,, 1971). More-
over, there are no westerly Rossby waves [ viz. Section 3,
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F1c. 13. Same as Fig. 12, but for westerly Kelvin,
Yanai, and =1 gravity waves.

especially Eq. (30a)], and as we have seen in Section 7
long-period equatorial gravity waves are (with the
exception of the Kelvin wave) rapidly damped. Thus,
the identification of the observed wave with Kelvin
waves remains likely despite certain problems with this
identification discussed in Part I; in consequence there
is little need for a detailed discussion of higher order
westerly modes similar to that presented for easterly
modes. I merely show, in Fig. 13, some results for
(F.n) vs 2 for a Kelvin wave, a Yanai wave, and an n=1
gravity wave. For each of these calculations T have
used U, as given in Fig. 1. In addition I have used
¢=18 m sec™?, s=—2, corresponding to £=3.12X10~*
km™%, and an unDoppler shifter period of about 13 days.
We see in Fig. 13 that for the above choice of %, ¢, and s
only the Kelvin wave can transmit zonal momentum
upward from the lower boundary. The gravest anti-
symmetric mode (a westerly Yanai wave) barely makes
it to 17.5 km while the #=1 wave bardly escapes the
boundary. This behavior is associated with the vertical
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Fic. 14. Same as Fig. 11 but for westerly Kelvin,
and n=1 gravity waves.




NOVEMBER 1972

wavelengths associated with the various modes. These
are shown in Fig. 14. While the local vertical wavelength
of the Kelvin wave exceeds 10 km over a significant
range of altitudes, the wavelengths of the other modes
barely exceed 1 km.

10. Propagating diurnal tide

As pointed out in Lindzen (1967b) the main diurnal
propagating tidal mode corresponds, in the present
notation, to an #=1 gravity mode for which ¢=2x/1
day and s=1. These values yield ¢=—465 m sec™™.
We are, with our present formulae, in a position to
evaluate the effects of wind on this mode. In general
this mode is primarily excited by insolation absorbed
by water vapor primarily below 18 km [a complete
discussion of atmospheric tidal modes is given in
Chapman and Lindzen (1970)7]. Above this height,
tropical winds vary between =30 m sec™ below 60 km
(Reed, 1964, 1966). Above this height little is known
about mean zonal winds; conceivably they might be of
the order of 450 m sec™ below 100 km. In general,
since these speeds are much smaller than ¢ we may
expect the effect of mean winds on the propagating
diurnal tide to be small. However, certain quantitative
aspects of the effect are worth noting.

First, T will describe what is not affected by winds
of the stated magnitude:

1) The quantity go remains close to 1.4.

2) The quantity o(z) [viz. Eq. (101)] remains
virtually constant.

3) The effect of dissipation as given by the factor
exp(—/# gd#’) in Eqs. (96), (100) and (101) is relatively
independent of mean wind. The dissipative model
described in Section 6 leads to a 159, reduction of
amplitude (relative to dissipationless results) between
20 and 90 km, for both easterly and westerly winds,
Ta both cases g=1/(450 km).

On the other hand, one may use Eqs. (24), (30), (77),
(83) and (84) to show that the following effects do occur:

1) Relative to a local vertical wavelength of about
23.5 km without wind, an easterly wind of 30 m sec™!
will decrease this to 20 km while a westerly wind of
30 m sec! will increase this to 27 km. Due to long-
period variations of mean wind, westerly and easterly
regimes do exist over the region 20-50 km implying
corresponding variations in phase for the propagating
diurnal mode on the order of 90° at 60 km.

2) Local changes in mean zonal wind of 4230 m sec™?
will lead to local changes of the quantities #(z) and v(z)
in Egs. (96) and (100) of 3-129, the larger values being
associated with easterly winds,

3) Local changes in mean zonal wind of 2230 m sec™!
will lead to local changes of meridional scale I, of =89,
with the largest scale corresponding to westerly wind.
Such changes of scale can lead to large changes in tidal
amplitude in the vicinity of zeros and extrema of tidal
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modes (viz. Figs. 7 and 8). In the absence of wind,
1o==1900 km.

My main purpose in presenting these results for the
propagating diurnal tide is to offer a quantitative caveat
against the precise comparison of observations with
theoretical results from classical tidal theory where the
effect of winds is ignored.

11. Conclusion

The bulk of my conclusion is simply a repetition of
the introduction. However, I would like to add that the
asymptotic solutions have permitted the solution of
problems whose short scales would have precluded the
economic application of finite-difference numerical
techniques. As a result, the possibility arises that
Greens functions based on the present asymptotic
solutions might provide a rapid and economical means
for evaluating the atmosphere’s response to various
forcing mechanisms, The possibility is currently being
explored as a possible alternative to the numerical
approach of Holton (1972).
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