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ABSTRACT

It is noted that vaciliations in zonally averaged flows can arise from wave interference between coexisting
waves with the same zonal wavenumber but different phase speeds. We show that the appropriate baroclinic
instability problem for the annulus does yield multiple instabilities which can produce vacillations via
interference. It is also shown that the interference of traveling Rossby waves with stationary forced waves

can lead to vacillations whose amplitudes and periods are consistent with the observed index cycle.

1. Introduction

In studying vacillations in either rotating annulus
experiments (Pfeffer et al., 1980a,b) or in the at-
mosphere (Winston and Krueger, 1961), one fre-
quently conceptualizes the phenomenon in terms.of
nonlinear baroclinic instability (Pedlosky, 1977; Bo-
ville, 1980). Briefly, the relevant models envisage an
initially baroclinically unstable zonal flow where the
growing baroclinic waves diminish the baroclinicity
of the zonally averaged flow. With diminishing baro-
clinicity the baroclinic waves decrease in amplitude,
allowing the baroclinicity to redevelop, restarting the
whole process. To be sure, the nonlinear evolution
of baroclinic instability need not always lead to vac-
illations, but theoretical models suggest that such
vacillations can occur. In a careful attempt to sim-
ulate two-layer results experimentally, Hart (1972)
found vacillations in modest agreement with nonlin-
ear theories. However, as Boville (1980) has noted,
the theoretical models predict vacillations differing
in many respects from those observed in other ex-
periments; in particular the vacillation period ob-
served is often much shorter than predicted (Pfeffer
et al., 1980a).

The purpose of the present paper is to explore an
alternative explanation of vacillations. In studying
baroclinic instability [for the Eady problem (e.g.,
Charney, 1973)] one can derive the following equa-
tions for the time rate of change of the energy as-
sociated with the eddy and the zonally averaged basic
states:
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Egs. (1) and (2) are merely a statement that the sum
of the energy of both eddy and zonally averaged
fields remains constant; i.e., eddies grow at the ex-
pense of the mean flow and vice versa. When Egs.
(1) and (2) are applied to unstable eddies the results
are self-evident. However, Eqs. (1) and (2) are
equally relevant to another situation where instabil-
ity is not specifically at issue. Namely, if we have
two waves with the same horizontal wavenumber,
non-orthogonal vertical structures and different phase
speeds, such waves will interfere with each other con-
structively and destructively with a time period de-
pendent on the wave periods. From Eqgs. (1) and (2)
we see that this periodic interference must lead to
a vacillation in the mean flow as well. The main
purpose of this paper will be to show that this simple
interference effect is a plausible explanation for
some vacillations in both the rotating annulus and
the atmosphere. )

In the atmosphere, we simultaneously have forced
stationary long waves as well as traveling Rossby
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waves with the same wavenumbers. The interferences

of these two waves must lead to vacillations in the
mean flow with periods equal to the Rossby wave
periods. We shall consider this case in Sections 3 and
4. The situation in the annulus is more complicated.
The Eady problem is usually considered appropriate
to the annulus. For the Eady problem (Eady, 1949)
there exists a short-wave cutoff for instability. Be-
yond this cutoff, there do, indeed, exist two solutions
for each wavenumber whose vertical structures are
non-orthogonal and whose phase speeds are different.
Unfortunately, these solutions are neutral and should
decay in the presence of friction. Below the cutoff
wavenumber, these two solutions coalesce into a sin-
gle unstable mode and interference cannot occur.
In Section 2 we reexamine the baroclinic insta-
bility problem for the annulus using profiles of static
stability suggested by annulus measurements rather
than the constant static stabilities appropriate to the
Eady problem. Such changes dramatically alter the
vertical distribution of horizontal gradients of po-
tential vorticity leading to multiple instabilities at a
given wavenumber and hence to the possibility of
interference-induced vacillations. Indeed, a consid-
eration of the stability properties of the more realistic
basic state yields immediate insights into the nature
of amplitude as well as tilted trough vacillations. It

also clearly demonstrates the importance of choosing

the correct linear problem before proceeding to non-
linear calculations.

In Section 3, a simple barotropic model is intro-
duced [similar to that employed by Charney and
Devore (1979)] wherein the interference of station-
ary waves with traveling Rossby waves of the same
wavenumber can be easily studied. This, in fact, ap-
pears to be the simplest configuration in which in-
terference-induced vacillations can be studied. From
observations (Eliasen and Machenhauer, 1965, 1969),
we know that such stationary waves and Rossby
waves do coexist in the atmosphere, though the origin
of the latter is not clear.

In Section 4, we use the data of Eliasen and Mach-
enhauer, as well as data independently analyzed, to
estimate the relative magnitudes of stationary and
traveling waves, and assign to the traveling waves
the frequencies calculated by Kasahara (1980). Our
simple barotropic model is, of course, too simple to
be accurately applicable to the atmosphere. None-
theless, it yields vacillation amplitudes and periods
encouragingly similar to those associated with ob-
served index cycles in the atmosphere.

With respect to both vacillations in the annulus
and in the atmosphere, the present study is clearly
preliminary in nature. The nature of vacillations pro-
duced by wave interference is trivially evident from
Egs. (1) and (2). The purpose of this paper, as we
have already stated, is merely to render plausible the
operation of this mechanism in real situations.
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2. Baroclinic instability in the annulus

For quasi-geostrophic flow in a Boussinesq fluid
on an f-plane, conservation of potential vorticity
leads to the following equation for perturbations on
a basic state a(z):

d ( da>
L
d\l/) dz\ dz ,
——— — = 4
dz< dz “—c ov=0 4
with boundary conditions
du
gl/,—udz v=0 at z=0,1, (5)
where )
L
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and ¥, the geostrophic stréamfunction, may be writ-
ten )
\I’ = \p(z)e"‘("‘“).

All lengths have been scaled by the depth H of the
fluid [viz., Charney (1973) and Green (1960) for
development of these equations].

For convenience, we will rewrite (4) in canonical
form; i.c., letting ¥ = Vey, Eqgs. (4) and (5) become
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/
and
i (Nz)zi|
P, Li—c N =0 at z=0,1. (9)
Now
~N, - -
7 U, = Uz = gy
= y — gradient of potential vorticity. (10)
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F1G. la. Eigenvalues of the Eady problem. Nondimensional
phase speed ¢, and growth rate kc; are shown as functions of non-
dimensional wavenumber k.

Fi1G. 1b. The gradient of basic-state potential vorticity g, and
the square of the Brunt-Viisild frequency N? as a function of
height z for the Eady problem.

FiG. lc. Examples of neutral (k¥ = 3.0) and unstable k = 1.6
eigenfunctions for the Eady problem.

We also will define

V)., 3 ((Nz),)z
2N* . 4\ Nt )T

For the Eady problem %, and N? are constant.
Hence g, = 0 in the interior. However, as shown in
Bretherton (1966) and in Lindzen and Tung (1978),
the boundary conditions (9) are equivalent to having
u,=0atz =0, 1, and having §-function contributions
to i,, at the boundaries. This gives a negative con-
tribution to g, at z = 0 and a positive contribution
at z = 1. Thus, the Eady problem’s basic state in-
volves a change in sign of g, as required for instability
(e.g., Charney, 1973). The Eady problem is peculiar
insofar as its inflection “point” consists in the entire
interior flow. The stability properties of the Eady
problem are shown in Fig, la, where ¢, and kc¢; are
shown as functions of k (c is normalized by & at z
= 1 while k is normalized by 1/Ve). As noted in
Section 1, there is only a single unstable mode at any
unstable k and hence, there is no obvious potential
for interference. Also shown are the (trivial) distri-
butions of g, and N? in Fig. 1b and examples of both
neutral and unstable eigenfunctions in Fig. 1c.

Now Lindzen and Tung (1978) noted that an in-
flection point was needed to establish a geometry for
wave overreflection. The necessary geometry is such
that if a fluid allows wave propagation in some region

Y= (11)
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(ignoring the imaginary part of c¢), then a wave in

this region can be overreflected (reflection coefficient

> 1) by a critical level (where ¢ = @) when the critical

level is separated from the propagation region by a

region of exponentlal behavior and when there exists

another region of wave propagation on the other side

of the critical level. When an overreflected wave is

contained by 'a wall or turning point it can become

an unstable model provided it satisfies a quantization

condition. Detailed discussions of the relation of
overreflection to baroclinic instability are given in

Lindzen et al. (1980), and Lindzen and Rosenthal
(1981). What we wish to emphasize here is that in-

creasing the number of “inflection points” (where.
g, = 0) multiplies the number of possible overre-
flecting wave regions and hence leads to the possi-

bility of multiple instabilities.

Looking at Eq. (10) we see that when either (IV?),
or i,, or both are nonzero then we have qy #0. If
we assume, for the moment, that (N?), = 0, it is clear
that only a fairly complicated profile in # can lead
to additional inflection points and it seems unlikely
that in practice such profiles will be sufficiently com-
plicated to lead, by themselves, to multiple instabil-
ities. On the other hand, if we hold #, constant, sim-
ple variations in N? can lead to profound changes in
g,—including additional inflection points and mul-
tiple instabilities. The situation of variable N? is com-
plicated by the term v [Eq. (11)] which essentially
modifies the effective value of k insofar as it affects
baroclinic instability.

As an example of the effect of variable N? on baro-
clinic instability, we consider the basic state

(12)

N¥z) = 0.3 + 0.7 exp[—(%'l()é>2] . (13)

u, = constant,

N?, as well as T(z), are shown in Fig. 2; also shown
is qy(z) We see that a modest change in 7(z) such
as to concentrate N2 in the middle of the fluid, rad-
ically alters g,(z)—replacing the single “inflection
point” of the Eady problem with three “inflection
points.” Egs. (8) and (9), with %, and N%(z) given
by Egs. (12) and (13), are solved numerically by an
algorithm described in the Appendix. The results of
the stability analysis are shown in Fig. 3. Fig. 3a
shows ¢, and k¢, as a function of k (¢ is normalized
by @ at z = 1 while k is normalized by l/V—lz_o) We
see that for k > 1.5, we now have two unstable modes
for each k, while for k£ < 1.5 there is only a .single
unstable mode. Note also that there are separate
growth rate peaks associated with both the multiple
mode and the single mode regime, the latter being
the larger of the two. Fig. 3b shows eigenfunctions
for various choices of k. For k£ < 1.5 the eigenfunction
resembles that for the Eady problem. For k > 1.5,
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FIG. 2a. The gradient of basic-state potential vorticity §, and
the square of the Brunt-Viisild frequency N? as a function of
height z for the example (13).

where we have two unstable solutions, their degree
of overlap increases as k — 1.5.

It is tempting to suggest that these two regimes
may be identified with the amplitude vacillation and
the tilted trough vacillation regimes in annulus ex-
periments (Pfeffer et al., 1974). As one moves
through the regime diagram for an annulus one finds
that at high thermal Rossby numbers [Ror
= gaHAT/Q*r, where g is the gravitational accel-
eration, « the coefficient of volume expansion, H the

fluid depth, AT the imposed temperature contrast, .

Q the rate of rotation of annulus, and r = (b — a)
where b is the outside radius and a the inside radius
of the annulus], the annulus is not wide enough to
contain low-k modes and one indeed does find am-
" plitude vacillations for which interference is now a
possible explanation. At lower values of Roy the an-
nulus is wide enough for low-k modes and tilted
trough vacillations are observed.

From recent results of annulus experiments (pri-
vately communicated by Pfeffer) similar to those
presented in Pfeffer er al. (1980b), we find the de-
scription of # still insufficiently detailed. However,
substantial data are available for T(z). These data
do show a concentration of N? in the interior of the
fluid. However, the peak of N? is found below the
middle of the fluid. The following is a fair fit to the
observed N -

FIG. 2b. The temperature profile 7(z) which modifies the Eady
problem results in the values of §, and N? shown in Fig. 2a.
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F1G. 3a. Eigenvalues of the stability problem in Fig. 2a. Non-
dimensional phase speed ¢, and growth rate kc; are shown as func-
tions of nondimensional wavenumber k.

2 _ jl (z — 0.15)
N=03+ 0.7Lz [tanh o1

(z—=-0.7) 1
—tanhT]J. (14)

We have investigated the stability properties of a
basic state described by (12) and (14). Fig. 4 shows
N?(z) as well as g,(z). Once again we have three
“inflection points.” In Fig. 5 we show stability results
(¢, here, is normalized by & at z = 1 and k is nor-
malized by I/Vémi,,). Double instabilities are also
found here for larger values of k, while a single Eady-
like instability is found at small k. Eigenfunctions
are shown in Fig. 6. Obvious differences can be seen
between the results in Fig. 5 and those in Fig. 3.
However, these differences can be significantly mod-
ified by modest alterations of #(z). Detailed analyses
of the results do not seem warranted until more se-
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F1G. 3b. Eigenfunctions for the stability problem in Fig. 2a.
Examples are shown where one wave exists at a given k(k = 1.0)
and where two modes exist (k = 3.0).
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FIG. 4. As in Fig. 2a except for N? given by Eq. (14).

cure and detailed data are available for the basic
state. : ‘

Nevertheless, it should be noted that if two un-
stable modes exist with wavenumber k, and real
phase speeds ¢,, and ¢, then amplitude vacillations

-will occur with frequency k(c,, — ¢,,). (Recall that
k is scaled by l/l/gmm and ¢, by # at z = 1.) The
rather long period for some observed amplitude vac-
illations [ ~130 rotation periods according to Pfeffer
et al (1980b)] thus favors small #, in the basic state
and values of k near the transition to singlemode
instability. Such values of k also are associated with

. maximum overlap of the two unstable modes. Indeed
for larger values of &, the degree of overlap between
the two unstable eigenfunctions may be too small to
permit much interference at all.

It should be noted that the wave interference
mechanism explains the wide variation in observed
vacillation periods (Pfeffer ef-al., 1980a,b), a result
not easily accommodated by nonlinear theories (Bo-
ville, 1980), which also predict weak and irregular
cycles for realistic parameter values in variance with
the extremely regular and strong amplitude vacil-
lation seen in the annulus experiments. ’

In a recent private communication, Pfeffer and
Buzyna have made available additional data for the
series A and B experiments described in Pfeffer et
al. (1980a). The vacillation is represented as the su-
perposition of two traveling waves with the same
wavenumber M, but differing in frequency w,, w,:

Fy(x, t) = Ccos(Mx — wit)

+ D cos(Mx — wyt). (15)
They determine values for C, D, w; and w, and find
expression (15) gives a striking fit to the data. In
addition, phase speeds w,/M, w,/M are typical of
VWH and %H depths in the annulus and eigenfunc-
tions are very like those in Fig. 3b, strongly sug-
gesting that in these cases at least the vacillation is
due to wave interference.

It. appears that our interference hypothesis may
be most effectively tested experimentally. For our
theory to be rigorously convincing one would have
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to show that our mechanism persists in a fully non-
linear analysis. Such an analysis would have to have
sufficient vertical resolution in order to handle our
multiple instability mechanism. Such a study is not
contemplated at the moment. It is conceivable [as
shown in some recent nonlinear analyses such as Hart
(1978)] that one instability might, in fact, destroy
the other. However, studies displaying such behavior
are usually dealing with unstable modes of different
wavenumbers occupying the same physical space in
the fluid. In our case we are dealing with instabilities
having identical horizontal wavenumbers but occu-
pying and drawing their energy from different parts
of the fluid. It seems unlikely that nonlinear effects
will allow one of the multiple modes to “absorb” the
other.

What we do anticipate, as we have already men-
tioned, is that as Ror decreases so as to allow the
Eady-type mode in addition to the multiple insta-
bilities, that the Eady-type mode may very well elim-
inate the other instabilities and produce a tilted
trough (as opposed to. an amplitude) vacillation.

3. Vacillations due to interference of Rosshy waves
with stationary waves

Although the essence of the vacillation mechanism
we are describing is given by Eqgs. (1) and (2), de-
tailed calculations of vacillations can be complicated.
An exception is the case of interfering forced sta-
tionary and free traveling Rossby waves in a baro-
tropic fluid. The study of this case illustrates the
mechanism we are proposing. Moreover, the results
of this section form the basis for our discussion of
the atmospheric index cycle in Section 4.

The equation describing this situation is the quasi-
geostrophic potential vorticity equation on a 8-plane
[essentially the same equation used by Charney and
Devore (1979)]: '

0 Vh
<a + vG-V>(V2¢ + By) + vg- %— =0,
where v;; is the geostrophic wind, ¢ the geostrophic
streamfunction, 8 the rate of variation of Coriolis

(16)

cp — i ke
1.0 5
8 4
6 3
4 .2

0 [T I N T B |
1.0 2.0 3.0 40 50 6.0
) . k

FIG. 5. As in Fig. 3a except for N? given by Eq. (14).
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FIG. 6. As in Fig. 3b except for N? given by Eq. (14).

parameter, and A height of bottom topography. Our
boundary condition is

v,=0 at p=0,/. (17)
We next let '
Y=~y + ¢

h="H
Primed quantities are taken to be small so that we
may expand (16) in amplitude.
To first order we have the linearized wave equation

a Uofo h
(Bl att s

The last term in (19) represents stationary forcing
due to flow over topography. Let

(18)

=0. (19)

= Re(A sinmye'**), (20)

where m = «/l. The solution to (19) can be written

Y’ =y’ forced + ¢’ free, (21)
where A
v’ forced = Re[y sinmye™**], (22)
¥’ free = Re[{ sinmye* 9], (23)
Substituting (22) into (19) yields
. h
V= uhfo 4. (24)

H uo(k2 + m2) -
Substituting (23) into the homogencous part of (19)
[i.e., leaving out (uo/H)(8H /dx)] we have :

B
k2+ m?’

The amplitude of the free solution, of course, is ar-

c= g — (25)
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bitrary. We will let ¥ = o = a.A, and for conve-
nience we will let « be real. Then

= A{coskx + a cos[k(x — ct)]} sinmy. (26)

Eq. (26) may be rewritten

¢’ = A{(1 + a coskct) coskx
+ a sinkct sinkx} sinmy 27)
= AA(1) cos (kx + ©(1)) sinmy,
where
A() = (1 + o® + 2« cosket)'/?, (28)
@ sinkct )

() tan <1 + « coskct (29)

The time variation of A(¢) results from the interfer-
ence of the forced and free waves. Note, also, that
the phase progression given by (29) is nonuniform.

Time variation of A4 is obviously akin to amplitude
vacillation—the degree of vacillation depending, of
course, on the relative magnitudes of the forced and
free waves; the period of vacillation is given simply
by the period of the free wave. The variation of eddy
kinetic energy (in our barotropic model there is no
potential energy) is easily calculated using

averaged Eddy Kinetic Energy

1 ——
= EKE = I f dy (i + v7), (30)
0

where ,
u = -y, = —AmA(t) cos[kx + ¢(t)] cosmy, (31)

vV =y = —AkA(t) sin[kx + €(¢)] sinmy. (32)
Using (31), (32) and (28), Eq. (30) becomes
EKE = BoAXm® + k*)(1 + o® + 2a cosket).  (33)
The time-dependent part of (33) is

VaA(m? + k¥)a cosket
or using (25) and (24)
110 Q 2 cosket. (34)

We know from Eqgs. (1) and (2) that (34) is balanced
by an identical (except for sign) variation in the en-
ergy of the zonally averaged flow. The explicit cal-
culation of the variation of zonal flow, however, is
of interest.

The vacillation in zonally averaged flow due to
wave interference is calculated by considering (16)
at second order, i.e.,

ivl‘pl/ ¢ya VZ\& +¢1

ELAP
o

9

= 2 "4+ u V2 1
Py 1% 14
oK

+6¢Z—<¢’y o (35)
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Averaging (35) with respect to x, we get

 d* —

oo 2.,
AV VT VT
A B
_ (., oK oK'\ fo _
(‘p’ax Vi > 0. (36)
C D

It is easily shown that terms A and B in (36) cancel.
For terms C and D, we get

—y Ll + Yok, = YaAhamk sin2my sinkct, (37)
and (36) becomes

—-——— ¢” foH“ (YaAhamk sin2my sinkct). (38)

Integrating with respect to ¢, Eq. (38) becomes

— 1§, Ah
‘ ;iy‘= > J;T;_‘}ﬂ sin2my coskct, (39)
and integrating with respect to y Eq. (39) becomes
wfv = —g"
1 .ﬂizam fo .
=—3 . g° skct
1
X (ﬂ cos2my — const) . (40)
To determine the constant in (40) we require that

(41)

(because no momentum is transported to the lateral
boundaries) and (40) becomes

_ 1 Aha f,
"4 ¢ H

. We may now directly evaluate the kinetic energy of
the zonally averaged zonal flow:

11

=0 at y=0

7

coskct(cos2my — 1).  (42)

1 .
= 2ll fo (ud + 2uou” + a")dy

Uy ! <_ 1 .Aita
] 4

=lu2  fo A
2% 4 H

1
= u(2,+

coskct)_dy + O(h*)

222 cosket + O(hY). [43]
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We see that the time-dependent part (43) does in-
deed balance (34).

Finally, we note that if we have a set of forced
modes of the form

W(m, n) cosmk[Xx — Syimm] sin y_ v, (44)
T
then (42) is generalized to
fo h(m, n) -
4H,,,z,,c(m )tl/( m, n)
X cos{mk[c(m, n)t + 8ymm — Shimm]}
2
X (cosﬂy - 1> . (4%
yr

It is worth noting from (45) that the effectiveness
of a pair of forced and free waves in generating vac-
illations in & is inversely‘proportional to c(m, n).

4. Estimates for vacillations in the atmosphere -

" Eliasen and Machenhauer (1965) have analyzed
the Northern Hemisphere flow field for the period
1 December 1956-28 February 1957. They decom-
posed the flow into spherical harmonic components
and studied the fluctuation w1th time of the com-
ponents.

They represented the Northern Hemisphere ﬁow
field as a sum of spherical harmonics, of the form

YUmg = (0tmg COSMA + B, , SINMA)P,, ,(P)
6,,,_q)P,,,,q(<P). (46) .

Here \ is the zonal coordinate and ¥ the meridional
coordinate. The P, , are the normalized associated
Legendre functions of the first kind. Eliasen and

= A, , cosm(X —

‘Machenhauer restricted the P, to be odd about the

equator (¢ — m odd). The ¢,,, were nondimension-
alized such that dimensional v equals 107*QR%k
X Vy. R denotes the radius of the earth and V is the -
spherical gradient operator.

Eliasen and Machenhauer reported the amplitude
A, and phase 67, of each of the waves ¥,,, 1 < m
< 4,1 < g — m<7in the 90-day mean flow. This
is taken to be the stationary component of the wave.
They also gave the time-mean amplitude A4,,, of each -

. wave as .
A(mq) [(amq) + (ﬁmq)zzll/2 (473.)
A(m,q) = (arzn,q + an.q)llza (47b)

T
(=1 [ ya
0
indicates the time average. (47c)

Finally, for waves (1, 2), (1, 4), (2, 3), (2, 5), (3,
4) and (3, 6) they reported the apparent phase speed .
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TABLE 1. Data reported by Eliasen and Machenhauer.

Period 7
Clm.q)
80y (deg longitude Observed (Kasahara)
(m, q) Aimay Ay (deg longitude) per day) (days) (days)

(1, 2) 9.5 8.8 330 -70 5.1 4.85
(1, 4) 9.6 3.9 55 -20 18 18.39
2,3) 6.2 4.1 52 —40 4.5 3.84
(2, 5) 20.1 17.9 33 -12 15 14.23
(3,4) 7.3 5.0 91 -20 6 4.28
(3, 6) 14.4 12.3 99 -8 15 13.65

of the traveling wave component. Calculations in this
paper will be restricted to these six waves. Table 1
contains the information they reported.

0%.q) is in degrees longitude while ¢, 4 is in degrees
longitude per day. 7 is period in days. The values in
Table 1 are in good agreement with Kasahara’s the-
oretical results for zonal wind fields representative
of the December-February time period.

If the various waves were purely stationary, we
would have A(nq) = Al .- The difference between
Amgy and Ag, ) indicates the relative importance of
transient components. If one assumes that the tran-
sient component consists only of a traveling Rossby
wave of amplitude 7, A%, ), then r(, ,, satisfies

Amg = W_'A(m,q)f (1 + 2r,,, cos?
0

+ reng)'?dt = A% I(rimg).  (48)

Since A4 and A%, are known the above is an
implicit expression for 7¢,,. The rg,, and A
= FingAlng for the six waves under consideration
were calculated numerically. The results are given
in Table 2. To be sure, the transient components are
unlikely to consist solely of traveling Rossby waves;
thus the results in Table 2 are likely to overestimate
the amplitudes of the traveling waves. Nevertheless,
we will use these values to estimate vacillation am-
plitudes and periods, using the theoretical formalism
of Section 3. To do this we must transpose the spher-
ical harmonic results of Eliasen and Machenhauer
onto a S-plane. We take a 8-plane centered at 45°N,
extending from the equator to the pole. The zonal
cigenfunctions, cosm(\ —§), are replaced with
cosmy2a~'(x — §), where a is the earth’s radius, while
the normalized meridional eigenfunctions P, , are
replaced by (—1)"'2/ Vrr sin2n® (also normalized),
where 2n =g —m + 1 and y = a®.

In terms of Section 3 the above results lead to
amplitudes and phases of stationary waves and am-
plitudes of Rossby waves shown in Table 3. Also
shown are 8-plane values of ¢(m, n) which are very
close to spherical results. Eliasen and Machenhauer’s
(1964) analysis leads to a choice for uy of 7.38 m s™.
For this u, we determine the values of A(m, n)
needed to produce the observed stationary waves.

The results shown in Table 4 are not unreasonable.
Finally, we evaluate the vacillation amplitude "
using Eq. (45) of Section 3. The results for each
mode are shown in Table 5. Note that the total vac-
illation can involve fluctuations of +1.5 m s™' in @
(compared to u, = 7.38 m s7!) and that the second
meridional eigenmodes [with periods O(18 days)]
dominate the vacillation [mainly because they are
associated with small values of ¢(m, n) but also be-
cause they are strongly forced]. The period is indeed
close to what one expects for the index cycle, and the
period is somewhat irregular because there are sev-
eral contributing modes with somewhat different
periods. The amplitude of the vacillation involves
changes in kinetic energy of £40% which are sub-
stantially larger than those found in observations,
but as we have already mentioned, we have probably
overestimated the amplitude of traveling Rossby
waves. One of the authors (R. S. Lindzen) is cur-
rently analyzing various data sets in order to get a
better estimate of these amplitudes. Preliminary re-
sults do not indicate that present results are more
than a factor or two too large.

5. Concluding remarks

This paper has noted that vacillations in zonally
averaged fields must arise when waves of the same
zonal wavenumber (but different phase speeds) in-
terfere with each other. For the atmosphere, prelim-
inary estimates show that interference between long
stationary waves and traveling Rossby waves can
account for both the period and amplitude of the
index cycle. While traveling Rossby waves have been
observed, our theory does not explain how they are
generated.

TABLE 2. Nondimensional amplitudes A, of the traveling waves
together with the ratios 7(mq) = Aim.q)/ Abng)-

(m, q) T'(m.q) Aimq)
(1, 2) 0.56 4.9
(1, 4) 2.35 9.2
(2, 3) 1.31 5.4
(2, 5) 0.69 12.4
(3, 4) 1.25 6.3
(3, 6) 0.81 10.0
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TABLE 3. Eliasen and Machenhauer data dimensionalized and
transferred to the beta plane.

/1l(m.n) A(,,,_,,) 5zn,n) Cm,n)

X 1073 X 1073 X 1077 (deg longitude
(m, n) (m?s™") (m?2s™") (m) per day)
(1, 1) 16.3 29.3 2.59 —-63.7
(1, 2) -30.6 -13.0 0.43 —18.2
2,1 18.0 13.7 0.41 -36.4
2, 2) —41.3 -59.6 0.26 -10.9
3,1) 21.0 16.7 0.72 —-18.2
3,2 -33.2 —41.0 * 0.78 -7.3

For the annulus, we have shown that the results
of the Eady problem are inappropriate, and when
vertical variations in static stability are allowed, in-
stabilities can occur in pairs (for each zonal wave-
number) thus allowing the interference mechanism
to operate.
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APPENDIX
Method of Solving the Eigenvalue Problem

The continuous eigenvalue problem defined by Eq.
(8) with associated boundary condition (9) can be
approximated by a finite matrix eigenvalue problem
as follows:

Egs. (8) and (9) are rewritten as

(i — )P, + [a+ (@ — c)B]¥ = 0,
G-, +[y+(@—-c)¥Y=0 z=0,1,

(8a)
(9a)

where
a= V), 4, —u
N2 z 2ZZ 9
NY),, 3 /[(N%,V
gy (O3 (@)
f 2N 4\ N
TABLE 4. Amplitudes of assumed forcing.
(m, n) hnny (m)
a,1) 436
(1,2) 165
2,1 189
(2,2) 694
3,1 200
3,2) 404
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TABLE 5. Vacillation amplitudes @, ..

lz(’;rr.n)
(m, n) (ms™)
(1, 1) 0.038
(1,2) 0.095
2,0 0.032
(2,2) 0.901
3,1 0.079
3,2) 0.630
0 _ﬁz ’
o= N;’
2N?T

The eigenvalue ¢ is removed to the right-hand side
to yield

¥, + (a+ )P = «(P,. + B¥),
uf, + (y +ad)P =c(P,+6¥) z=0,1.

(8b)
(9b)

Second-order finite differences are used to discre-
tize (8) on the N + 2 points, N =0,1,2,..., N

+ 1 where 2 = (i — 1)Az, Az = 1/(N — 2) and
o0 = ot
(p(") : (p(i+l) — 2¢(i) + (p(i—l)
2z - (Az)z V 2
(p’ _ ¢(i+1) — v(i—])
z 2Az ’

The boundary conditions (9b) are discretized in
the same manner and used to eliminate ¥ and
@D in the finite-difference approximation to (8).
The result is a N- dlmensmnal matrix eigenvalue
problem

M® = ¢D®,

[D'M]® = .

The eigenvalues and eigenvectors are extracted
using the highly efficient QR algorithm (Wilkinson
and Reinock 1971). Accuracy of the solution verified
by comparison between eigenvalues for resolutions
corresponding to N = 50 and N = 100. Note that
only two or four normal mode eigenvalues are found
depending on whether there is one growing mode

" (and its associated decaying mode) or two. The other

(N — 2) or (N — 4) are spurious.
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